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Modelling the Air Flow in the Lung
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e Decomposition of the Respiratory Tree in 3 Parts J
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A Three-Level Model 1/2

Multiscale Model

e Model introduced by C. Grandmont, Y. Maday and B. Maury '05
e blood flow :

@ C. A Figueroa, K.E. Jansen, C. A. Taylor, I. E. Vignon-Clementel '06
@ A. Quarteroni, S. Ragni, A. Veneziani '01

@ A. Quarteroni, A. Veneziani '03
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A Three-Level Model 2/2
Multiscale Model

@ The proximal part (up to the 5-7th generation) :
where the incompressible Navier-Stokes equations hold

@ The distal part (from the 6-8th to the 16 generation) :
where the Poiseuille law is satisfied

@ The acini : where the oxygen diffusion takes place, embedded in an
elastic medium : the parenchyma described by a simple spring model.
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The Proximal Part

Navier-Stokes Equations
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The pressures I1; are unknown and depend on the downstream parts.
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The Distal Part

Multiscale model

Electric Circuit Analogy SCsel e Lo
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The Spring

Multiscale model

Spring-mass
The equation satisfied by the position x of the diaphragm is

mX = _kX + fmus + PaS
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The Coupled System

Navier-Stokes / Spring-Mass
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By incompressibility Sx = Z/ u-n= —/ u-n
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NB : One particularity of this system that all of the outlets I'; are
coupled
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@ The Numerical Method
@ Description of the Superposition Method
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Motivation

Bilinear Form
The special boundary conditions modify the standard Stokes-bilinear forms :

am(u,v):u/QVu-ijLgRi </riu-n> (/riv-n>

Finite Element Discretization —
@ All the elements of each boundary I'; are coupled
@ The FE matrix obtained is non standard

This cannot be easily and directly implemented in a standard FEM Software
without going deeply into the code : L. Baffico, C. Grandmont, B . Maury '09

v

Superposition Method.
Same idea used by :

@ J. Heywood, R. Rannacher, S. Turek '96
@ L. Formaggia, J.-F. Gerbeau, F. Nobile, A. Quarteroni '02
@ A. Veneziani, C. Vergara '07
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Numerical Method 1/3

[o. 0 Pre-Processing Step

We compute the solutions (uj, p;) of the following
generalized Stokes Problem
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Numerical method 2/3

Prediction Step

The correction term (G"+1, p"*1) takes into account the unsteady term and

the time dependent spring term :
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Numerical method 3/3

Correction Step
Thanks to the linearity of the problem, the solution at the time step n + 1 is
computed as follows :
2N
utt = gn+l 4 Zan+lui
I

i=0
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Numerical method 3/3

Correction Step

Thanks to the linearity of the problem, the solution at the time step n + 1 is
computed as follows :
2N
untl = gn+t o Za_mrlui
I
i=0

where o1 = (a?*l, e a&“) solves a linear system : Ao = b

Note that o"*! is such that the boundary conditions on T;

uVu-n—pn:—Pan—(Ri/u-n>n
F

are satisfied on the T;.
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9 Numerical Simulations: FreeFEM++
@ 2D Simulation Results: FreeFEM++2d
@ 3D Simulation Results: FreeFEM++3d
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2D Simulation of the Respiration

Forced Respiration

We present numerical results obtained in the case of forced maneuvers.

In this case the force fiys applied to the spring is as follows :

1 T T T T T T T T

10-

Note that the first part of the maneuver (for 0 < t < 8s) corresponds to

respiration at rest.
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2D Simulation of the Respiration :

Velocity

Velocity Magnitude
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2D Simulation of the Respiration :

Pressure
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3D Simulation of the Respiration : Velocity

Velocity at inspiration Velocity at expiration
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3D Simulation of the Respiration : Pressure

Pressure at inspiration
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Pressure at expiration
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Simulation of the Respiration: Phase Portrait

Phase Portrait: 2D Phase Portrait : 3D
0.012 T T T T T T T T T T 0.014
0.01 | - 0012 |
0.008 . 001
0.006 i 0.008
0.004 i 0.006
0.002 | E oot
0 L J 0.002
-0.002 [ g r
o
-0.004 - e
1 1 1 1 1 1 1 1 1 1 o004
-0.006
-0.002  -0.001 0 0.001 0.002 0.003 00 n n n n n n : : .

y

Driss Yakoubi (INRIA) Rennes, June 22 22/22



	Modelling the Air Flow in the Lung
	The Proximal Part
	The Distal Part
	The Spring

	The Numerical Method
	Description of the Superposition Method

	Numerical Simulations: FreeFEM++
	2D Simulation Results: FreeFEM++2d
	3D Simulation Results: FreeFEM++3d


